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that the Monte Carlo analysis does not employ the pes-
simistic approximations of (40) and (41).

IV. CONCLUSIONS

The concepts we have described and the results obtained
are promising. Our approach is the most direct way of
currently obtaining minimum cost designs under practical
situations, at least in the worst case sense. It is felt that this
work is a significant advance in the art of computer-aided
design, since the approach permits the inclusion of all
realistic degrees of freedom of a design and all physical
phenomena that influence the subsequent performance.

The approach automatically creates a tradeoff between
physical tolerances (implying the cost of the network),
model parameter uncertainties (implying our knowledge
of the network), the quality of the terminations, and,
eventually, the cost of tuning. Our approach to mismatches
permits input and output connecting lines of arbitrary
length—an important step towards modular design.

The conventional computer-aided design process, which
seeks a single nominal design or its extension which attempts
to find a design center influenced by sensitivities (see, for
example, Rauscher and Epprecht [9]), would normally
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be a preliminary investigation to find a starting point for
the work we have in mind.
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Abstract—This paper discusses the propagation of the magnetostatic
surface wave in two ferrite slabs (mamely, YIG and Ga-YIG) with
different magnetic saturations, and considers a weak coupling in between
them. The theoretical results are obtained by using the conventional
perturbation technique which is subsequently supported by experiment.
Further, the time delay in group velocity affected by the magnetic
perturbation is treated theoretically.
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I. INTRODUCTION

HE propagation loss associated with a magnetostatic

surface wave on a YIG slab is relatively low [1].
Recently, a millimeter delay-line equalizer has been reported
as one of the applications of these surface waves [2].

Since surface waves tend to concentrate the major part of
their energy near the surface [3], this phenomenon can be
utilized to couple the wave to other circuits through the
surface to manipulate the propagation characteristic
through this coupling. In particular, one problem that
arises is the control of the propagation characteristic by
changing the distance between the two interacting slabs.
This type of problem has already been considered by
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Ganguly et al. [4], [5] and Bongianni [6] who have sug-
gested that a nondispersive delay line may be obtained
with the help of two such interacting slabs. However, they
treated the coupling between the two slabs when these have
different anisotropic internal magnetic fields [5], [6]. The
purpose of the present paper is to discuss the propagation
of the magnetostatic surface wave in two ferrite slabs
(namely, YIG and Ga~YIG) of different magnetic satura-
tions with the existence of a weak coupling in between them.
The theoretical results are obtained by using the conven-
tional perturbation technique which is subsequently
confirmed by experiment. The time delay of group velocity
affected by the magnetic perturbation is also estimated
theoretically.

- 1L. PERTURBED AND UNPERTURBED QUANTITIES
A. Perturbation Representation

In this section, the perturbation formula for such a
magnetostatic case is developed. Let the unperturbed field
quantities be designated as E,, H,, D,, and B, and the
corresponding perturbed quantities be E, H, D, and B.
Thus the use of Maxwell’s equations yields to

V x E = —joB V x H = joD (1)
and

V X Eo* =jCDBO* V X Ho* = —ja)DO*. (2)

In the previous expressions, the asterisk refers to the com-
plex conjugate. As the medium, treated here, is a ferrite
medium—the relation between the magnetic flux and the
magnetic field can be described as

B=jH NE)
where
u jg 0
ﬁ, = -—jk‘, H 0 .
0 0 1
In turn
p 4dny M H,
GH) - o?
and '
_ 4oy M
(H)? - w?’
Also, one can write
VxH=0 and Vx Hy =0 4

From the magnetostatic approximation of the previous
equation, and using (1) and (2), some proper mathematical
manipulations result in the following expression [7]

[v-UoseB + pioBr1ax =0, )
In this equation, ¢ and ¢, are the magnetic potentials as
obtained from (4) and are assumed to be independent of
the z direction.
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Fig. 1. Geometry of the problem.

The geometry of the problem considered can be seen
from Fig. 1. It consists of two thin slabs. Slab IV has
thickness / and the slab I has thickness w with a finite gap
s in between them. The biasing magnetic field is assumed
to be applied in the +z direction, and thus the resulting
magnetostatic surface wave is considered to be propagating
in the #y direction. The underlying idea of the present
formulation can be stated as: the field quantities are
assumed to be unperturbed in the presence of the large
gap s in between the two slabs where, in fact, no coupling
is considered; whereas, they become perturbed as the two
slabs close each other. To proceed with the analysis, the fol-
lowing approximations are made: 1) The perturbation which
occurs when the two slabs are near each other is assumed
to affect only one surface of slab IV, i.e., the surface x = 0
and not the opposite surface x = 4, and 2) the Poynting
power flowing in the y direction is assumed to be considered
only within slab IV. Thus the power flowing in open
regions III and V are neglected. In the present analysis,
these approximations can be supported in view of the
physical nature of the surface waves.

Based on the aforementioned assumptions, the field
distribution in the —y direction of propagation is assumed
to be exp [j(k "y + wt)], where £~ denotes the propagation
constant in the — y direction, because the waves concentrate
the energy on the x = 0 surface for propagating in the —y
direction of the present configuration [3]. Use of this
distribution function in (5) results in

—Jj[B(jwdo*) + ¢(jeoBo)*] - i,
Ak~ = 7 =20

®

where
Ak™ =k™ — k7
and

h
4P, = f [Bjode*) + $(jwBy) i, dx
1]

i, and i, being the unit vectors in the +x and —y directions,
respectively, and P, is the power flow through slab IV.
Equation (6) represents the surface perturbation formula
for the magnetostatic-wave case. This expression is similar
to the expression for the elastic surface-wave case in
piezoelectric materials as developed by Auld [7].

Now referring to Fig. 1, the magnetic potentials in each
separate region are defined as ¢,, ¢,, @3, ¢4, and ¢5 in
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the perturbed condition and they are ¢so, ¢4q, and @s,
in the unperturbed case.
All these magnetic potentials satisfy Laplace’s equation

V¢ = 0. O
The solutions of the potential functions are obtained as

¢1 = (dexp (k™x) + Bexp (—k™x)) exp (jk~y) exp (jor)

®

¢2 = Cexp (k™) exp (jk™)) ©

¢s = (Dexp (k™x) + Eexp (—k™x)) exp (k™) (10)
and

$30 = Nexp (k™ x) exp (jk7y) (11)

where A, B, C, D, E, and N are the constants and an
approximation that k,~ =~ k£~ is made. By seeking the
normal components of the magnetic-flux densities for each
region, one can obtain from equations (8)—(11)

B, = k'[(—1 + x)4 exp (k™x)
+ (' + k)Bexp (—k~x)] exp (jk~y) (12)

By, = —k~Cexp (k™x) exp (k™) 13)
By, = —k™(Dexp(k™x) — Eexp (—k™x))
- exp (k™) (14)
and
Biox = —k7 N exp (k™ x) exp (k™). (15

Here, 4’ and «' are the susceptibility tensors for slab I.
These quantities are similar as defined in (3), except that
. the magnetic characteristics are different.

From
V:B=V-(i-H) =0 (16)
and
V-By=V-(i-Hy) =0 amn
a new variable ¥ is defined as
ViV(dy — ¢a0) = V- 4VY =0 (18)

where Y represents the slight variation of the magnetic
potential in slab IV due to.the closing in of the slab 1.
The solution of equation (18) can easily be written in the
form, assuming the previous approximation thatk,” ~ &7,

¥ =(Fexp(—k™x) + Gexp (k™x)) exp (jk~y) (19)

where F and G are constants. Based on the assumptions
mentioned before, the magnetic perturbation on the x = 4
surface of slab IV is negligible. Thus iy must vanish in the
infinite +x direction, which means the value of G reduces
to zero. Otherwise, for ¥ to vanish for x = +4, the con-
dition obtained from (19) is G = — F exp (—2k~ /). How-
ever, from the numerical results, the value of G was seen
to be very small and hence can be considered zero for all
practical purposes.
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Also, from (16)-(18), one can obtain
B, — By = —uVi (20)
and the equivalent magnetic impedance z;(0) is assumed as

ZAO) . (b
a(0) = 2 — g (22
w0 = o~ (34)

where

o= (2.,

JjwB3xo

3y

To carry out the present analysis, the boundary conditions,
as applied to the problem, are

¢y = ¢, By, =B,, at x= —(s+w) (22)

1 = ¢3 Bi,=B;, at x= —s (23)
= Biox = By

B30 = Pao 30 40 } at x = 0. 24)

¢3 = 4)4 B4x = B3x

Then the quantities B, and ¢, are expressed in terms of
¢30 by using (19), (21), and (24), and ultimately put into
(6) to yield

k= 1 = (u + K)jzu(0) 4P,
Here, the value of Ak~ is defined as Ak™ = k™ — ko*™ =
k™ — ko, because the propagation constant in the case

of the unperturbed field is always real as is discussed in the
following section. Now, from (25), it can easily be seen
that Ak~ becomes zero if z,(0) has the value j. Thus, it
can be physically interpreted that the quantity zu(0)
corresponds to the equivalent impedance of the outer
magnetic circuit. This impedance can easily be evaluated
by the substitution of (10), (14), and (24) in (21), and is

—[zu(~s) + j tanh (k~5)]

w0 = — = S anh tes) — 1

(26)

where, zy(—s) is the value of z5 at x = —s and can be
estimated from boundary conditions (22) and (23) when
substituted with equations (8)-(10) and (12)-(14). Thus one
gets the following expression

zy(—s)

wy'? - 0? + (0,2 — ©® + 4nwyM’) tanh (wk™)

=/ (wp'? — w? — 4nwyM’) tanh (Wk™) + wo'2 — w?’
@n
Here
wy' = y(H; + 4nM")
w, = vH;
and

CUO'2 = 'yzHi(Hi + 47[M').

Finally, by putting (26) and (27) into (25), the complete
perturbation formula is obtained as

Ak~ _ —ofw, + 0y — 20][1 + jzx(0)] |$s0l” 28)

k= o, — o — jloy — ©]z4(0) 4P,
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In the previous expression
z4(0) = é {[w? — & + dnyM’

+ (0p'? — @* — dnwyM’) tanh (k7s)]
- tanh (Wk™) + (0o'* — 0?)(1 + tanh (k7s))}
0 = {(w? — &® + 4rwyM’) tanh (k75)
+ 0y'? - @* - dnoyM’}
- tanh (Wk™) + (0o'2 — 0*)(1 + tanh (k7s))
and
Wy = Y(H; + 4nM).

B. Unperturbed Solution

In the unperturbed case, the dispersion relation is
obtained by applying the boundary conditions relating to
the magnetic potentials ¢3¢, @4q, and ¢s, and is given by

A+ -«
(1= p* -«

This is similar to the expression as obtained by Damon and
Eshbach [3]. Also k= = k,~, as may be obtained from the
root of (29), is always real if one considers the no-loss case.
Then, by expressing the values of B, and ¢, within slab IV
in terms of ¢;, and using (6), one can easily obtain the
'power flow in the —y direction which is given as

I$30l® _ -1
4pP," [ 20
w

exp (—2k~h) = (29)

(30)

L0 g

8nyM (w, — co)]
o, + ©

wo 2 - (02
where

o, = y(H; + 2nM).

Lastly, by substituting (29) and (30) in (28), the perturbed
propagation constant is easily calculated.

III. DIsCUSSION ON THE PERTURBED
AIR GAP AND SLAB MODES

In this section, the frequency dependence of the propaga-
tion constant for a magnetostatic surface wave affected by
the magnetic perturbation is numerically estimated by using
the perturbation formula of (28).

The properties of the slabs chosen for doing the ex-
periment are as follows: slab IV is a polished single-crystal
YIG (0.56 x 0.45 x 0.056 in cm) oriented in the (110)
plane and the slab I is a polished Ga-YIG (0.967 x
0.402 x 0.053 in cm) oriented in the (100) plane. The
different material constants chosen are as follows: y =
1.76 x 107 (Oe-s)™!; 4aM (for YIG) = 1730 Oe; 4nM’
(for Ga-YIG) = 400 Oe; w = 0.053 cm; # = 0.056 cm;
and H; = 520 Oe. With these numerical values, the dis-

persion diagram is obtained from (28)-(30) and is shown"

in Fig. 2. From the figure it can be seen that the curve for
s = 0.14 cm almost resembles the curve obtained from the
unperturbed solution of (29). Further, there are two sets of
curves. One set lies between f; (3.05 GHz) and f; (3.87 GHz)
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Fig. 2. Dispersion diagram and the related experimental results.

and has the characteristic that the curves droop down with
the lowering of the s values. This mode can be designated
as the *“slab mode” due to the weak coupling of the magneto-
static surface waves propagating in the two slabs. The other
set of curves lying in the frequency domain between 3.75
and 3.87 GHz corresponds mainly to the region k= + Ak~
less than 25 cm™'. This mode is similar to the “air-gap
mode” in a semi-infinite ferrite medium already discussed
by one of the present authors [8]. The physical interpreta-
tion for the existence of the previous two types of modes,
which are measured experimentally and discussed in Section
IV, can be given as follows. ;

The layered structure of Fig. 1, though considered to be
infinitein the + y direction, has finite y dimension practically,
and hence the surface waves propagating on the two slabs
make traveling-wave-type resonances [9].

The generation of the two aforementioned types of modes
can be clearly understood from the Fig. 3(a) and (b). With
the applied magnetic field in the opposite direction (—z)
as compared to Fig. 1, the magnetostatic surface wave
travels in a closed path around both the YIG and Ga-YIG
slabs, i.e., between the x = 0, x = 4 and the x = —s,
x = —(s + w) surfaces, respectively, to exhibit traveling-
wave resonances. For the separation distance s in between
the two slabs, about one wavelength long, the surface
waves on the x = 0 and x = —(s + w) surfaces couple
weakly with each other and this phenomenon gives rise to
the slab mode, which is sensitive to the magnetic perturba-
tions. On the other hand, with the s value smaller than the
thicknesses of the slabs concerned, the surface wave at
x = 0 finds an easier way to return through the x = —s
surface and resonate. This produces the air-gap mode,
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Fig. 4. The experimental setup.

though the slab mode may exist simultaneously due to the
rather weak coupling between the surface waves traveling
in the x =4 and x = —(s + w) planes. But the present
analysis is not fruitful enough for an explanation of the
air-gap mode which is not sensitive to the perturbation.

IV. EXPERIMENTAL RESULTS

The experimental setup can be clearly seen from Fig. 4.
The power from the microwave sweep generator is supplied
to the YIG slab through a fine-wire antenna attached to
the side of it and is received by another similar antenna to
send it to the X-Y recorder circuit. Both antenna circuits
are grounded through a resistance of about 50 Q. The
Ga-YIG slab is held fixed on a micrometer which can adjust
the air gap between the slabs, and the micrometer is assumed
to be indifferent to the magnetic-field variations. Now the
apparatus head is put under the influence of the electro-
magnets.

Thus the frequency characteristics of the magnetostatic
surface wave can be recorded by the recorder with the
frequency fed to the X terminal and the signal to the Y
terminal. Here, the sweep frequency is chosen to be from
2.9 to 4.2 GHz and the magnetic-field intensity is adjusted
to Hy, = 620 Oe.
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Theoretically, the magnetostatic resonances that occur
have to satisfy the relation [10] '

k™ + Ak~ =TT,
&z

= 0,2,3,--- (31)
where .Z is the length of the slab (= 0.56 cm, in the present
case). This relation is good enough when one considers the
resonance only at the x = O surface but not on the x = £
surface. However, in the present case, due to the weak
coupling between the waves on the two slabs, the resonance
conditions at the x = 0 and x = / surfaces are assumed
to be approximately equal. Of course, while doing the
experiment, the frequency dependencies of the - other
measuring circuits, such as antennas, etc., are minimized.
The experimental data thus obtained are plotted in Fig. 2.
The resonance numbers depicted in the figure refer to the
numbers defined in (31).

As can be seen from Fig. 2, the experimental points
coincide with the theoretical ones for n = 3,4,5. However,
there is a mismatch in the cases when n = 2 and for smaller
s values (s = 0.01). The reasons for this can be explained
as follows. First, the present analysis was carried out
assuming a two-dimensional problem which does not give a
good approximation, particularly at a low frequency like
fo (k= + Ak~ =~ 0), [3]. Secondly, with smaller s values,
the perturbation approximation is thought to break down.

Next, to measure the frequency dependence of the
resonances with fine variations in the s value, a rather
narrow frequency band is chosen (from 3.72 to 3.98 GHz)
and the s value is pre01sely adjusted below 0.01 cm by
inserting into the air gap extremely thin mica plates. The
results obtained are shown in the Fig. 5. It should be noted
from the figure that for s values below 0.01 cm, the number
of resonance peaks increases and the frequency intervals
between each resonance grows narrower. The corresponding
theoretical curves are also plotted by solving (28), where
k™~ + Ak~ values satisfy the resonance condition of (31).
In the figure, the solid line represents the slab mode and the
dotted lines stand for the air-gap mode. The expenmental
curves are in approximate agreement with the theoretical
curves for the resonance numbers 3,4,5,6. But, as can be seen,
they are not in good agreement above n = 7. The réasons
may be due to the effect of the demagnetizing field which
arises when the two ferrite slabs of different magnetic
saturations are brought into close proximity, and also to
the anisotropy of the internal magnetic field, the theoretical
estimation of which is rather complicated. The other reason
may also be due to the Gaussian distribution of the RF
magnetic field in the z direction, which has not been
considered in the present analysis [11]. On the other hand,
the resonances occurring between 3.8 and 3. 86 GHz below
s = 0.01 cm seems to be due to the air-gap mode [8].
Although these do not coincide exactly with the theoretical
values, but from the tendency of these curves, the air-gap
modes may be assumed to exist.

The measured difference between the magnetic field in
the air and the inner magnetic field is Hy = Hy, — H,,
and is estimated to be (100 + 10) Oe.



596

Ry

[ FREQ. IN GHz.

T

All the 'Q’ experimental points carry
the symbol §'though it is not shown.

T | 1 l
o 005 01 013
AIRGAP(S) IN cm. g

Fig. 5. Comparison between the theory and the experiment.

V. THEORETICAL ESTIMATION OF GROUP DELAY

In this section, the group delay of the magnetostatic
wave is considered theoretlcally to show how it 1s affected
by the magnetic perturbation.

For s1mphc1ty, the quantity jz,(0) is nearly equal to —1,
and |¢;0|%/4P, is assumed to be frequency independent.
With this assumption, the group delay per unit length can
be estimated from (28) as

Ok L HAKT) L1+ AC), sfem  (32)
ow o

where '

. = %~

° ‘w
and

AC = _1_ a(Ak_).
To 560

Physically, 7, is the group delay in the unperturbed case
and 7, AC is that in the perturbed case. Thus the expres-
sions for 7, and AC can be obtained by the use of (28) and
(29) as

w
To h(wsz _ wz) ( )
and
AC = — 1930 {w(l + izgO) + -
Pn ) To

’[1 + jza0) + ww]} (34)
ow :
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Fig. 6. Group delay as a function of frequency.

From the previous expressions, it is obvious that 7, is in
inverse ratio to the slab thickness and becomes infinity
as o approaches w,. Also AC depends directly on the
factors 1 + jzy(0) and [@30|?/4P,. To seek the value of 7,
numerically, (33) is used with a magnetic field of 520 Oe
and is plotted in Fig. 6 with the center line. As can be
seen, a large delay appears as the frequency approaches
3.8 GHz. Also the value for AC is plotted with different
values for s which are shown by solid lines in the figure.
It should be noted that in the ordinate AC is plotted instead
of 7, AC in order to demonstrate the effect of the perturba-
tion. When the two slabs of different magnetic saturations
are generally brought closer, the curves for AC show a
tendency to have maximum value in the frequency interval
3.3 and 3.8 GHz. Thus the dispersive characteristics are
weakened slightly in this region.

VI. CONCLUSION

The propagation characteristics of the magnetostatic
waves associated with two ferrite slabs having different
magnetic saturations are discussed using the perturbation
method and the existence of two modes; that is, the slab
mode and the air-gap mode have been shown. Some
experiments have been performed using single-crystal YIG
and Ga-YIG slabs and the experimental results are found
satisfactory within the range of approximation of the
perturbation theory. _Further, from the theoretical estima-
tion of the frequency dependence of the group delay, it
has been found that the dispersive characteristics of group
delay are weakly affected by the magnetic perturbation.

Thus it is concluded that the perturbation method is still
unique in understanding the fundamental behavior of the
magnetostatic surface waves and is promising enough for
application to delay lines and the other complex signal-
processing systems. The authors can foresee its further
usefulness in more complex problems, such as in the
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analysis of the gain of magnetostatic amplifiers employing
a composite layered structure of semiconductors and
ferrites [12].
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Different Representations of Dyadic Green’s
Functions for a Rectangular Cav1ty

CHEN-TO TAI, FELLOW, IEEE, AND PAWEL ROZENFELD, MEMBER, IEEE

Abstract—Several different but equivalent expressions of the dyadic
Green’s functions for .a rectangular cavity have been derived. The
mathematical relations between the dyadlc Green’s function of the vector
potential type and that of the electric type are shown in detail. This work
supplements the oné by Morse and Feshbach {1].

1. INTRODUCTION

HE dyadic Green’s function for a rectangular cavity

has previously been studied by Morse and Feslibach

[1]. The function which they introduced is of the vector
potential type, hereby denoted by G ,, corresponding to the
dyadic version of the vector Green’s function for the vector
Helmholtz equation. Two forms of. G, were obtained by
these authors. While one form is complete, the other one
is not. These authors mentioned that the two forms are
equivalent when a longitudinal part is added to the in-
completed form, but the exact relations were not discussed.
In 4 recent paper, Rahmat-Samii [7] presented the dyadic
Green’s function of the electric type for rectangular wave-
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guides and cavities, and introduced an auxiliary dyadic g,,.
This dyadic, however, is the dyadic Green’s function of the
vector potent1al type G 4, as can easily be seen by comparmg
(1) in the present work with [7, eq. (9)]. As a result, [7, eq.
(26)] fot g,, is the same as our expression (10) The rep-
resentation of the dyadic Green s functions for rectangular
waveguides which is given in Rahmat-Samii’s paper has
previously been presented in [3] and for rectangular
cavities in [6].

In this paper, we give a detalled derxvauon of several
alternative representations of the dyadic Green’s functions
of both the vector potential type and the electric type for a
rectangular cavity. Although the two types of functions are
intimately related, it is more direct to use the function of the
electric type that would bypass the tedious differentiation
of discontinuous series for the evaluation of the fields in a
source region.

I1: DyADIC GREEN’S FUNCTIONS OF THE VECTOR
PotenTIAL TYPE AND OF THE ELECTRIC TYPE

. The ¢lassification of dyadic Green’s functions of various
types and kinds has previously been discussed [2], [3].
For the present work, it is sufficient to review two types of
functions pertaining, respectively, to the vector potential
furniction and the electric field. The dyadic Green’s function



