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that the Monte Carlo analysis does not employ the pes-

simistic approximations of (40) and (41).

IV. CONCLUSIONS

The concepts we have described and the results obtained

are promising. Our approach is the most direct way of

currently obtaining minimum cost designs under practical

situations, at least in the worst case sense. It is felt that this

work is a significant advance in the art of computer-aided

design, since the approach permits the inclusion of all

realistic degrees of freedom of a design and all physical

phenomena that influence the subsequent performance.

The approach automatically creates a tradeoff between

physical tolerances (implying the cost of the network),

model parameter uncertainties (implying our knowledge

of the network), the quality of the terminations, and,

eventually, the cost of tuning. Our approach to mismatches

permits input and output connecting lines of arbitrary

length-an important step towards modular design.

The conventional computer-aided design process, which

seeks a single nominal design or its extension which attempts

to find a design center influenced by sensitivities (see, for

example, Rauscher and Epprecht [9]), would normally

be a preliminary investigation to find a starting point for

the work we have in mind.
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Abstract—This paper discusses the propagation of the magnetostatic
surface wave in two ferrite slabs (namely, YIG and Ga-YIG) with
different magnetic saturations, and cousiders a weak coupling in between

them. The theoretical results are obtained by using the conventional
perturbation technique which is subsequently supported by experiment.
Further, the time delay in group velocity affected by the magnetic

perturbation is treated theoretically.

Manuscript received November 19, 1975; revised March 1, 1976.
T. Bhattacharyya received financial assistance from Matsushita
Research InstItute, Tokyo, Japan, to carry out this research.

M. Tsutsumi and N. Kumagai are with the Department of Electrical
Communication Engineering, Osaka University, Yamada Kami,
Osaka 565j Japan.

T. Bhattacharyya is with the Department of Electrical Communica-
tion Engineering, Osaka University, Yamada Kami, Osaka 565,
Japan, on leave from Jadavpur University, Calcutta 32, India.

L INTRODUCTION

T HE propagation ‘loss associated with a magnetostatic

surface wave on a YIG slab is relatively low [1].

Recently, a millimeter delay-line equalizer has been reported

as one of the applications of these surface waves [2].
Since surface waves tend to concentrate the major part of

their energy near the surface [3], this phenomenon can be
utilized to couple the wave to other, circuits through the

surface to manipulate the propagation characteristic

through this coupling. In particular, one problem that

arises is the control of the propagation characteristic by

changing the distance between the two interacting slabs.

This type of problem has already been considered by
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Ganguly et al. [4], [5] and Bongianni [6] who have sug-

gested that a nondispersive delay line may be obtained

with the help of two such interacting slabs. However, they

treated the coupling between the two slabs when these have

different anisotropic internal magnetic fields [5], [6]. The

purpose of the present paper is to discuss the propagation

of the magnetostatic surface wave in two ferrite slabs

(namely, YIG and Ga=YIG) of different magnetic satura-

tions with the existence of a weak coupling in between them.

The theoretical results are obtained by using the conven-

tional perturbation technique which is subsequently

confirmed by experiment. The time delay of group velocity

affected by the magnetic perturbation is also estimated

theoretically.

11. PERTURBEDAND UNPERTURBED QUANTITIES

A. Perturbation Representation

In this section, the perturbation formula for such a

magnetostatic case is developed. Let the unperturbed field

quantities be designated as Eo, HO, DO, and BO and the

corresponding perturbed quantities be E, II, D, and B.

Thus the use of Maxwell’s equations yields to

VxE=–jcoB VxH=jcoD (1)

and

V x EO* = jmBo* V x HO* = –j@O*. (2)

In the previous expressions, the asterisk refers to the com-

plex conjugate. As the medium, treated here, is a ferrite

medium—the relation between the magnetic flux and the

magnetic field can be described as

B=&” H (3)
where

[1
pju O

~= –j~p O.

o 01

In turn

47ry2MHi
p=l+

(~Hi)2 – 0.)2

and

4moyA4

~ = (yHi)2 – co’ “

Also, one can write

VXH=O and VXHO=O. (4)

From the magnetostatic approximation of the previous

equation, and using (1) and (2), some proper mathematical

manipulations result in the following expression [7]

J
V o [jco&*B + @(j@BO)*] dx = O. (5)

In this equation, @ and do are the magnetic potentials as

obtained from (4) and are assumed to be independent of

the z direction.
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Fig. 1. Geometry of the problem.

The geometry of the problem considered can be seen

from Fig. 1. It consists of two thin slabs. Slab IV has

thickness h and the slab I has thickness w with a finite gap

s in between them. The biasing magnetic field is assumed

to be applied in the +Z direction, and thus the resulting

magnetostatic surface wave is considered to be propagating

in the i-y direction. The underlying idea of the present

formulation can be stated as: the field quantities are

assumed to be unperturbed in the presence of the large

gap s in between the two slabs where, in fact, no coupling

is considered; whereas,. they become perturbed as the two

slabs close each other. To proceed with the analysis, the fol-

lowing approximations are made: 1) The perturbation which

occurs when the two slabs are near each other is assumed

to affect only one surface of slab IV, i.e., the surface x = O

and not the opposite surface x = h, and 2) the Poynting

power flowing in they direction is assumed to be considered

only within slab IV. Thus the power flowing in open

regions III and V are neglected. In the present analysis,

these approximations can be supported in view of the

physical nature of the surface waves.

Based on the aforementioned assumptions, the field

distribution in the –y direction of propagation is assumed

to be exp [j(k-y + ret)], where k- denotes the propagation

constant in the —y direction, because the waves concentrate

the energy on the x = O surface for propagating in the – y

direction of the present configuration [3]. Use of this

distribution function in (5) results in

–j[B(ja@O*) + @(j@o)*] “ iX
Ak- = ~=o

4Pn
(6)

where

Ak- = k- – ko-*

and

J4Pn = h [B(j@o*) + @(jcoBJ*]iy dx
o

iX and iy being the unit vectors in the +x and — y directions,

respectively, and Pn is the power flow through slab IV.

Equation (6) represents the surface perturbation formula

for the magnetostatic-wave case. This expression is similar

to the expression for the elastic surface-wave case in

piezoelectric materials as developed by Auld [7].

Now referring to Fig. 1, the magnetic potentials in each

separate region are defined as @l, 62, $3, 44, and 45 in
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the perturbed condition and they are #30, #40, and 450 Also, from (16)-(18), one can obtain

in the unperturbed case.

All these magnetic potentials satisfy Laplace’s equation
B4 – B40 = –pVJ/I (20)

Vz(p =0. (7)
and the equivalent magnetic impedance ZM(0) is assumed as

The solutions of the potential functions are obtained as

(JI = (A exp (k-x) + B exp (–k-x)) exp (jk-y) exp (j@t)

(8)

f#J2 = C exp (k-x) exp (j/c-y) (9)

A = (D exp (k-x) + E exp (-k-x)) exp (jk-y) (lo)

and

k = N exp (k-x) exp (jk-y) (11)

where A, B, C, D, E, and N are the constants and an

approximation that k.- % k- is made. By seeking the

normal components of the magnetic-flux densities for each

region, one can obtain from equations (8)-(1 1)

Blx = k-[(–~’ + K’)A exp (k-x)

+ (p’ + K’)B exp (–k-x)] exp (jk-y) (12)

B2X = –k-C exp (k-x) exp (jk-y) (13)

B3X = –k-(D exp (k-x) – E exp (-k-x))

o exp (jk-y) (14)

and

B30X = –k-N exp (k-x) exp (jk-y). (15)

Here, V’ and d are the susceptibility tensors for slab I.

These quantities are similar as defined in (3), except that

the magnetic characteristics are different.

From

V“B=VO(ji” H)=O

and

(16)

‘H(O)

()

. _jk &ZH(0) = —
lz~o(o)l B4X .=0

where

Z*(O) = ()430

jcoB3X0 .= o“
(21)

To carry out the present analysis, the boundary conditions,

as applied to the problem, are

41 = 42 Blx = B2X at x = –(s + w) (22)

& = 43 Blx = B3X at x=—s (23)

430 = 440 B303 = B40X

)
at x=O.

43 = 44

(24)
B4X = B3X

Then the quantities B4X and 44 are expressed in terms of

030 by using (19), (21), and (24), and ultimately put into
(6) to yield

Ak- –co[l + p + ~][1 + jz~(0)] !43012—=k-
1 – (p + ~)jz.(0) ~‘

(25)

Here, the value of Ak - is defined as Ak - = k- – ko* - =
k-

– k.’, because the propagation constant in the case

of the unperturbed field is always real as is discussed in the

following section. Now, from (25), it can easily be seen

that Ak - becomes zero if z~(0) has the value j. Thus, it

can be physically interpreted that the quantity z~(0)

corresponds to the equivalent impedance of the outer

magnetic circuit. This impedance can easily be evaluated

by the substitution of (10), (14), and (24) in (21), and is

ZH(0) =
-[z~(-s) + j tanh (k-s)]

(26)
jzH(–s) tanh (k-s) – 1

V“Bo=VC(fl” Ho)=O (17) where, z~(–s) is the value of z* at x = –s and can be

a new variable ~ is defined as
estimated from boundary conditions (22) and (23) when

substituted with equations (8)–(10) and (12)-(14). Thus one

V“iwh-$m)=v”iw=o (18) gets the following expression

where ~ represents the slight variation of the magnetic ZH(– S)

potential in slab IV due to. the closing in of the slab I. . ~o’z – ~z + (~~2 – ~2 + 4xoyM’) tanh (yk-)

The solution of equation (18) can easily be written in the = J (coM’z – 0.)2
form, assuming the previous approximation that ko - z k-,

– 47rc@4’) tanh (wk-) + COO’2– co2”

(27)

~ = (Fexp (-k-x) + G exp (k-x)) exp (jk-y) (19)

where F and G are constants. Based on the assumptions

mentioned before, the magnetic perturbation on the x = h

surface of slab IV is negligible. Thus V must vanish in the
infinite +x direction, which means the value of G reduces

to zero. Otherwise, for * to vanish for x = +h, the con-

dition obtained from (19) is G = –F exp (–2/c-h), How-

ever, from the numerical results, the value of G was seen

to be very small and hence can be considered zero for all

practical purposes.

Here

o.)~’ = ~(llt + 47CM’)

(Oh = yHi
and

coo‘2 = ~2Hi(Hi + 4~M’).

Finally, by putting (26) and (27) into (25), the complete

perturbation formula is obtained as

Ak- —O.)[coh+ qJ — 20][1 + jz~(0)] 143012-— .k-
co~-w - j[~~ – co]zM(0)

i.. (28)
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In the previous expression

z*(o) = ~ {[cohz – coz -1- 4moyM’
Q
+ (coM’z– Coz- 47coJyd4’) tanh (k-s)]

“ tanh (w/c-) + (00’2 – co2)(l + tanh (k-s))}

Q = {(0,’ – OJ2 + 4moyM’) tanh (k-s)

+ oJJf’2 – co2 - 47rcoyM’}

. tanh (w%-) + (coO’2 – co2)(l + tanh (k-s))

and

W~ = Y(Hi + 4~M).

B. Unperturbed Solution

In the unperturbed case, the dispersion relation is

obtained by applying the boundary conditions relating to

the magnetic potentials ~30, 440, and 450 and is given by

exp (–2/c-/z) =
(1 + JJ)2 – 7C2

(1-p)2–7c2”
(29)

This is similar to the expression as obtained by Damon and

Eshbach [3]. Also k- % k.’, as maybe obtained from the

root of (29), is always real if one considers the no-loss case.

Then, by expressing the values of BO and #0 within slab IV

in terms of q530 and using (6), one can easily obtain the

power flow in the – y direction which is given as

143012 = –1

.[

4P.- ~ 20+
(30)

~-h 87cyM(c0, – @)

q+w 0J02 — c02 1
where

0.). = y(Hi + 2?rM).

Lastly, by substituting (29) and (30) in (28), the perturbed

propagation constant is easily calculated.

III. DISCUSSIONON THE PERTURBED

AIR GAP AND SLAB MODES

In this section, the frequency dependence of the propaga-

tion constant for a magnetostatic surface wave affected by

the magnetic perturbation is numerically estimated by using

the perturbation formula of (28).

The properties of the slabs chosen for doing the ex-

periment are as follows: slab IV is a polished single-crystal

YIG (0.56 x 0.45 x 0.056 in cm) oriented in the (1 10)

plane and the slab I is a polished Ga–YIG (0.967 x

0.402 x 0.053 in cm) oriented in the (100) plane. The

different material constants chosen are as follows: y =

1.76 x 107 (Oe”s)-l; 47cM (for YIG) = 1730 Oe; 4rcikf’

(for Ga-YIG) = 400 Oe; w = 0.053 cm; h = 0.056 cm;

and Hi = 520 Oe. With these numerical values, the dis-

persion diagram is obtained from (28)–(30) and is shown

in Fig. 2. From the figure it can be seen that the curve for

s = 0.14 cm almost resembles the curve obtained from the

unperturbed solution of (29). Further, there are two sets of

curves..One set lies betweenjo (3.05 GHz) and f. (3.87 GHz)
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Fig. 2. Dispersion diagram and the related experimental results.

and has the characteristic that the curves droop down with

the lowering of the s values. This mode can be designated

as the “slab mode” due to the weak coupling of the magneto-

static surface waves propagating in the two slabs. The other

set of curves lying in the frequency domain between 3.75

and 3.87 GHz corresponds mainly to the region k- + Ak -

less than 25 cm-1. This mode is similar to the “air-gap

mode” in a semi-infinite ferrite medium already discussed

by one of the present authors [8]. The physical interpreta-

tion for the existence of the previous two types of modes,

which are measured experimentally and discussed in Section

IV, can be given as follows.

The layered structure of Fig. 1, though considered to be

infinite in the +y direction, has finite y dimension practically,

and hence the surface waves propagating on the two slabs

make traveling-wave-type resonances [9].

The generation of the two aforementioned types of modes

can be clearly understood from the Fig. 3(a) and (b). With

the applied magnetic field in the opposite direction (– z)

as compared to Fig. 1, the magnetostatic surface wave

travels in a closed path around both the YIG and Ga–YIG

slabs, i.e., between the x = O, x = h and the x = —s,

x = – (s + w) surfaces, respectively, to exhibit traveling-

wave resonances. For the separation distance s in between

the two slabs, about one wavelength long, the surface

waves on the x = O, and x = – (s + w) surfaces couple

weakly with each other and this phenomenon gives rise to

the slab mode, which is sensitive to the magnetic perturba-

tions. On the other hand, with the s value smaller than the

thicknesses of the slabs concerned, the surface wave at

x = O finds an easier way to return through the x = .–s

surface and resonate. This produces the air-gap mode,



TSUTSUMI et (II.: MAGNETOSTATIC SURFACE-WAVE PROPAGATION

-“%353
(d)

-H
43

tx

(b)

Fig. 3. The magnetostatic resonance of two types. (a) Weak coupling.
(b) Tight coupling.
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Fig. 4. The experimental setup.

though the slab mode may exist simultaneously due to the

rather weak coupling between the surface waves traveling

in the x = h and x = – (s + w) planes. But the present

analysis is not fruitful enough for an explanation of the

air-gap mode which is not sensitive to the perturbation.

IV. EXPERIMENTAL RESULTS

The experimental setup can be clearly seen from Fig. 4.

The power from the microwave sweep generator is supplied

to the YIG slab through a fine-wire antenna attached to

the side of it and is received by another similar antenna to

send it to the X–Y recorder circuit. Both antenna circuits

are grounded through a resistance of about 50 Q. The

Ga-YIG slab is held fixed on a micrometer which can adjust

the air gap between the slabs, and the micrometer is assumed

to be indifferent to the magnetic-field variations. Now the

apparatus head is put under the influence of the electro-

magnets,
Thus the frequency characteristics of the magnetostatic

surface wave can be recorded by the recorder with the

frequency fed to the X terminal and the signal to the Y

terminal. Here, the sweep frequency is chosen to be from

2.9 to. 4.2 GHz and the magnetic-field intensity is adjusted

to HO = 620 Oe.

Theoretically, the magnetostatig
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resonances that occur

have to satisfy the relation [10]

k-+- Ak-=fi = 0,2,3, “ . .
9’ n

(31)

where & is the length of the slab (= 0.56 cm, in the present

case). This relation is good enough when one considers the

resonance only at the x = O surface but not on the x = h

surface. However, in the present case, due to the weak

coupling between the waves on the two slabs, the resonance

conditions at the x = O and x = h surfaces are assumed

to be approximately equal. Of course, while doing the

experiment, the frequency dependencies of the other

measuring circuits, such as antennas, etc., are minimized.

The experimental data thus obtained are plotted in Fig. 2.

The resonance numbers depicted in the figure refer to the

numbers defined in (31).

As can be seen from Fig. 2, the experimental points

coincide with the theoretical ones for n = 3,4,5. However,

there is a mismatch in the cases when n = 2 and for smaller

s values (s = 0.01). The reasons for this can be explained

as follows. First, the present analysis was carried out

assuming a two-dimensional problem which does not give a

good approximation, particularly at a low frec@ency like

f. (k- + Ak” x O), [3]. Secondly, with smaller s values,

the perturbation approximation is thought to break down.

Next, to measure the frequency dependence of the

resonances with fine variations in the s value, a rather

narrow frequency band is chosen (from 3.72 to 3.98 GHz)

and the s value is precisely adjusted below 0.01 cm by

inserting into the air gap extremely thin mica plates. The

results obtained are shown in the Fig. 5. It should be noted

from the figure that fors values below 0.01 cm, the number

of resonance peaks increases and the frequengy intervals

between each resonance grows narrower. The corresponding

theoretical curves are also plotted by solving (28), where

k- -I- Ak- values satisfy the resonance condition of (31).

In the figure, the solid line represents the slab mode and the

dotted lines stand for the air-gap mode. The experimental

curves are in approximate agreement with the theoretical

curves for the resonance numbers 3456 But, as can be seen,99>.
they are not in good” agreement above n = 7. The reasons

may be due to the effect of the demagnetizing field which

arises when the two ferrite slabs of different magnetic

saturations are brought into close proximity, and also to

the anisotropy of the internal magnetic field, the theoretical

estimation of which is rather complicated. The other reason

may also be due to the Gaussian distribution “of the RF

magnetic field in the z direction, which has not been

considered in the present analysis [11]. On the other hand,

the resonances occurring between 3.8 and 3.86 GHz below

s = 0.01 cm seems to be due to the air-gap mode [8],
Although these do not coincide exactly with the theoretical

values, but from the tendency of these curves, the air-gap

modes may be assumed to exist.

The measured difference between the magnetic field in

the air and the inner magnetic field is ~0 = HO – ~i,

and is estimated to be (100 + 10) Oe.’
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V. TWORETICAL ESTIMATION OF GROUP DELAY

In this section, the group delay of the magrwtostatic

wave is considered theoretically to show how it is tiected

by the magnetic perturbation.

For simplicity, the quantity jz~(0) is nearly equal to – 1,

and I@3012/4Pn is assumed to be frequency independent.

With this assumption, the group delay per unit len~h can

be estimated from (28) as

SSSSTRANSACTIONS ON MICROWAVS THEQRY AND TECHNIQIJSS, SEPTEMBER 1976

~ _ ak’- + d(Ak-).— - = ~0(1 + AC), s/cm (32)
80 am

where

ak-

‘0=%-

and

Physically, ZO is the group delay in the

and TOAC is that in the perturbed case,

unperturbed case

Thus the expres-

sions for To and AC can ‘b~ obtained by the use of (28)_and

(29) as

03
To = -’

12(OJ,2- d)
(33)

and

AC= -N
4Pn {

@(l + jzrf(o)) + ‘:

[
+ 1 + jz~(o) + ~~’ +:@))]} . (34)

14

12

I

I

1
14

, Y*

/

j 12

2.2

Fig. 6. Group delay as a function of frequency.

From the previous expressions, it is obvious that To is in

inverse ratio to the slab thickness and becomes infinity

as co approaches co.. Also AC depends directly on the

factors 1 + jz~(0) and l@3012/4P.. To seek the value of To

numerically, (33) is used with a magnetic field of 520 Oe

and is plotted in Fig. 6 with the center line. As can be

seen, a large delay appears as the frequency approaches

3,8 GHz. Also the value for AC is plotted with different

values for s which are shown by solid lines in the figure.

It should be noted that in the ordinate AC is plotted instead

of To AC in order to demonstrate the effect of the perturba-

tion. When the two slabs of different magnetic saturations

are generally brought closer, the curves for AC show a

tendency to have maximum value in the frequency interval

3.3 and 3.8 GHz. Thus the dispersive characteristics are

weakened slightly in this region,

VI. CONCLUSION

The propagation characteristics of the magnetostatic

waves associated with two ferrite slabs having different

magnetic saturations are discussed using the perturbation

method and the existence of two modes; that is, the slab

~ode and the air-gap mode have been shown. Some
experiments have been performed using single-crystal YIG

and Ga–YIG” slabs and the experimental results are found

satisfactory within the range of approximation of the

perturbation theory. Further, from the theoretical estima-

tion of the frequgmcy dependence of the group “delay, it

has been found that the dispersive characteristics of group

delay are weakly affected by the magnetic perturbation.

Thus it is concluded that the perturbation method is still

unique in understan”~ing the’ fundamental behavior of the

magnetostatic surface waves and is promising’ enough for

application to delay lines and the other complex signal-

proceksing systems.” The authors can foresee its further

usefulness in more complex problems, such as in the,,
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analysis of the gain of rnagnetostatic amplifiers employing

a composite layered structure of semiconductors and

ferrites [12].
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Different Representations of Dyadic Green’s
Functions for a Rectangular Cavity

CHEN-TO T!d, FELLOW, IEEE, AND PAWEL kbzENFELD, MEMBER, IEEE

,4bstract-Several different but equivalent expressions of the dyadic

Green’s functions for .a rectangular cavity have been derived. The
mathematical relations between the dyadic Green’s function of the vector
potential type and that of the elechic type are shown in detail. This work
supplements the one by Morse and Feshbach [1].

I. INTRODUCTION

T HE dyadic Green’s function for a rectangular cavity

has previously been studied by Morse and Fesl-ibach

[I]. The function which they introduced is of the vector

potential type, hereby denoted by CA, corresponding to the

dyadic version of the vector Green’s functicm for the vector

Helmholtz equation. Two forms of. ~~ were obtained by

these authors. While one form is Complete$ the other one

is not. These authors mentioned that the two forms are

equivalent when a longitudinal part is added to the in-

complete form, but the exait relations were not ,discussed.

In a recent paper, Rahmat-Samii [7] presented the dyadic

Green’s function of the electric type for rectangular wave-
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guides and cavities, and introduced an auxiliary dyadic g~.

This dyadic, however, is the dyadic Green’s function of the

vector potential type GA, as can easily be seen by coxhparing

(1] in the present work with [7, eq. (9)]. As a result; [7, eq.

(26)] for ~~ is the same as our expression {1,0). The rep-

resentation of the dyadic Green~s functions for rectangular

waveguides which ,is given in Rahmat-Samii’s paper has

previously been presented in [3] and for rectan@lar

cavities in [6].

In this paper, we give, a detailed derivation of several

alternative representations of the dyadic Green’s functions

of both the vector potential type and the electric type for a

rectangular cavity. Although the two types of functions are

intimately related, it is more direct to use the function of the

electric type that would bypass the tedious differentiation

of discontinuous series for the evaluation of the fields in a

source region.

IL DYADIC GREEN’S FUNCTIONS OF THE VPCTOR
POTENTIAL TYPE AND OF THE ELECTRIC TWE

The classification of dyadic Green’s functions of various

types and kinds has previously been discussed [2], [3].

For the present work, it is sufficient to review two types of

functions pertaining, respectively, to the vector potential

function and the electric field. The dyadic Green’s function


